Angles in a triangle - special cases
(1)

Here is a triangle.
a) What type of triangle is it?
$\xrightarrow{\text { Isoscelen }}$ \qquad
How do you know?

There are two siden of equal length.
b) Work out the size of angle m.
c) What do you notice?
d) Complete the sentence to describe the angles in an isosceles triangle.

In an isosceles triangle \qquad
\qquad

2 Identify and label the angles that will be equal in each triangle.

(3) Work out the sizes of the unknown angles.
a)

c)

b)

$$
c=59^{\circ} d=62^{\circ}
$$

d)

Talk about your reasons with a partner.
4. Dexter is working out the unknown angles in triangles.

Do you agree with Dexter? No
Explain your answer.
Both unmarked angled are equal so $180-28=1.52$ and $152 \div 2=76 \quad$ Eadn_missing_angle is 76°
(5) Work out the sizes of the unknown angles.
a)

c)

d)

6 Whitney and Jack are working out the angles in this triangle.

(7)

Are the statements true or false?
a) Every isosceles triangle is equilateral.
b) Every equilateral triangle is isosceles.
\qquad
c) A right-angled triangle can be equilateral.
d) A right-angled triangle can be isosceles.
\qquad
true \qquad
Explain your answers to a partner.

8 Two angles in a triangle are 43° and 74°.
Is the triangle isosceles? No
Show your workings.

$$
\begin{aligned}
& 43+74=117 \\
& 180-117=63
\end{aligned}
$$

(9) One angle in an isosceles triangle is 29°.

What could the other angles be? Give two possible answers.
29° and 122° or 75.5° and 75.5°

10
Angle b is twice the size of angle a.
Work out the size of angle c.

